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Abstract 14 

Integrating neural cultures developed through synthetic biology methods with digital computing has 15 

enabled the early development of Synthetic Biological Intelligence (SBI). Recently key studies have 16 

emphasized the advantages of biological neural systems in some information processing tasks. 17 

However, neither the technology behind this early development, nor the potential ethical opportunities 18 

or challenges, have been explored in detail yet. Here we review the key aspects that facilitate the 19 

development of SBI and explore potential applications. Considering these foreseeable use cases, 20 

various ethical implications are proposed. Ultimately this work aims to provide a robust framework to 21 

structure ethical considerations to ensure that SBI technology can be both researched and applied 22 

responsibly. Keywords: Biocomputing, neuroscience, synthetic biology, intelligence, ethics. 23 

Introduction 24 

Advancements in hardware, software, and synthetic biology (wetware) have resulted in new methods 25 

for interacting with in vitro biological neural systems. The most advanced of these have sought to 26 

embody these neural systems into simulated environments to elicit dynamic goal-directed behavior, 27 

referred to as Synthetic Biological Intelligence (SBI)1. SBI systems can be broadly defined as the 28 

result of intentionally synthesizing a combination of biological and silicon substrates in vitro for the 29 

purpose of goal-directed or otherwise intelligent behavior. SBI is distinct from brain-computer 30 

interface (BCI) and similar approaches as it does not involve whole organisms, using only specific 31 

biological material, usually neural tissue derived typically through synthetic biology processes, as a 32 

biomimetic material within the larger system.  33 
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It is only relatively recent that the ethics of experimenting with brain tissue has been seriously 34 

considered, with the overwhelming focus on cells from a human origin2. The majority of these ethical 35 

considerations also focus on the generation of 3-dimensional (3D) neural structures generally referred 36 

to as “organoids” derived from human stem cells3–8. Typically, these discussions do not account for 37 

the significant variability amongst different organoids or that a continuum exists between simpler 38 

monolayers of neural tissue and various assemblies of more complicated organoids. This discourse is 39 

further complicated by inconsistencies in terminology and nomenclature, and uncertainties around the 40 

ontological and potential moral status of these structures5,7–9,9,10. Here we outline details of SBI as an 41 

emerging technology, along with the foreseeable applications and ethical considerations that may 42 

arise. Finally, we propose a pathway for promoting constructive dialogue and adopting an ethical 43 

approach that balances potential utility with foreseeable risks of harm and the uncertainty inherent to 44 

novel technologies.  45 

The Development of Closed-Loop Systems to Embody in vitro Neural Systems  46 

The use of closed-loop paradigms for in vitro neurons – whereby activity from a neural system is 47 

measured, applied to an environment, and updated environmental information communicated back to 48 

the neural system – has received relatively limited exploration. Early work supported the proposition 49 

that in vitro neurons would respond to incoming stimulation adaptively or engage in behaviors 50 

consistent with blind-source separation phenomena 11,12. Following on from this, several studies 51 

developed tools for, or identified interesting neural response patterns from, in vitro closed loop 52 

stimulation paradigms, e.g.13–18. Preliminary investigations into goal-directed in vitro neural behavior 53 

displayed limited robustness or details which precluded any conclusion of goal-directed learning 54 

and/or did not pass through full independent peer review (e.g. 19–22). Yet key work demonstrated that 55 

closed-loop stimulation resulted in significantly greater functional plasticity over time and potentially 56 

exhibited some other shaped behavior 17,23–25.  57 

Building on this work, recent research has shown that in vitro biological networks of cortical cells, 58 

from either mouse or human origin via synthetic biology methods, were able to display real-time 59 

adaptive goal-directed learning in simulated environments1. Importantly, this work outlines key 60 



3 
 

methods and hypotheses which can identify the potential mechanism of actions behind goal-directed 61 

or intelligent behaviors in neural systems. Interestingly, the results accorded with multiple 62 

electrophysiological changes that were also observed. Intelligence, displayed through the goal-63 

directed behavior of embodied1 in vitro neurons, was termed SBI.  As an umbrella term, SBI has 64 

unique properties that open key considerations previously less critical to consider. Three key factors 65 

can be identified as technological preconditions of SBI: 1) the scalable and diverse opportunities that 66 

arise from modern stem cell technology and synthetic biological methods; 2) the hardware and 67 

software applications which enable the interaction with the biological tissue; 3) the 68 

neurocomputational theories and subsequent inferences for eliciting behavior from the system and to 69 

better understand what the implications of this may be.  70 

1) Stem Cell Technology & Synthetic Biology 71 

Perhaps the largest advancement in experimental neurobiology related to SBI has occurred with the 72 

generation of renewable pluripotent stem cell cultures that can be differentiated to neural cells26. Early 73 

work was performed via embryonic stem cells27–29, yet the later generation of induced pluripotent 74 

stem cell (iPSC) lines, generated from consenting donations of adult tissue, provides an ethical and 75 

renewable process for generating neural tissue28,30–33 . Most previous work interacting with neural 76 

tissue focused on primary cell culture, whereby neurons were obtained from living animals, 77 

disassociated, and grown under controlled conditions. While this does produce viable neural cultures 78 

and can be somewhat specific depending on the technical quality of those performing the work34–38, it 79 

has distinct limitations.  80 

Firstly, primary cell culture is, at best, linearly scalable, which means to scale up systems would 81 

require a growing number of animals to be killed for tissue harvesting – an ethically fraught prospect 82 

35. Secondly, there are limitations in accessing pure or specific populations of cell types. While broad 83 

regions, such as hippocampal or cortex, can be targeted, the ratio of cell types and almost any other 84 

 
1 Here embodied is taken to mean separated from the external environment. Here embodiment means able to 
have an internal system to act and be acted upon via this external environment and is enabled through a 
closed-loop system of information input and output. It does not denote any inherent capacity in and of itself.  
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factor are difficult to modify. Further, although some organotypic cultures can be generated from 85 

primary tissue, the scaling and complexity of these remain limited39,40. Finally, the need to breed, 86 

house, maintain and harvest neuronal tissue from animals creates a number of logistical, ethical and 87 

practical challenges. Deriving neuronal tissues from animals is thus not suited for widespread 88 

application and testing of SBI.  89 

In contrast, the use of iPSCs removes all these concerns while providing new opportunities. 90 

Techniques to exponentially scale up the production of iPSCs are well established41. Neural cells can 91 

be generated from iPSCs using methods that follow natural ontogeny (i.e. 28,30), with direct 92 

differentiation techniques using viral vectors to modify gene expression (i.e. 42,43), or through direct 93 

genetic modification to make cell lines overexpress these genes in response to small molecules 33. 94 

Furthermore, increasingly complex 3D structures (organoids, see Figure 1) can be reliably generated 95 

from iPSCs that open up yet further opportunities and challenges44–49.  Finally, although technical 96 

expertise and equipment is still required to generate these neural cultures, the logistical and space 97 

requirements are significantly less than involving animal subjects. These advantages of using iPSC 98 

tissue for SBI are critical in providing a viable pathway towards wider research and development of 99 

the technology above what has previously been done. 100 

2) Enhanced Hardware & Software applications  101 

Figure 1 | A schematic 

of key steps and 

differences between 

generating a culture of 

neurons from 

pluripotent stem cells 

to 2D (monolayers) 

compared to 3D 

(organoids). The 

essential difference is 

to allow organoid self-

assembly in low-

adherence plates after 

mild centrifugation of 

cells at early stage of 

differentiation. 
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SBI technology must be able to record activity from living biological neurons, transmit this 102 

information to a virtual or physical system to allow action, and then provide information back to the 103 

biological neural network that can be altered according to the action performed. Ideally this closed 104 

loop occurs in real-time, so that the neural system is able to dynamically adapt to the effect of its 105 

actions on the environment. Improvements in hardware and software allow for more advanced and 106 

nuanced interactions with neural systems.  107 

The most prevalent method of interaction remains through electrophysiological recording and 108 

stimulation via multielectrode arrays (MEA)11,37,50,51.  However, optic approaches have also been 109 

explored52. Previously, limitations in computational power or algorithm efficiency required work to 110 

either make sacrifices as to what could be implemented computationally in these systems (i.e., 17) or 111 

were unable to implement real-time closed-loop systems, requiring relatively long latencies (i.e., 24). 112 

Advancements in computational processing power allow greater degrees of data management for 113 

signals both in and out of the neural system53–58.   114 

Further, while passive MEA are capable of being used in sophisticated approaches14,18,50, the 115 

development of high-density MEA (HD-MEA) utilizing CMOS technology enabled magnitudes more 116 

spatial resolution and flexibility59–62. Future work now focuses on expanding from two-dimensional 117 

arrays to better record from and stimulate 3D structures such as organoids 63,64. These advances can be 118 

combined with better big data processing pipelines and tools to better analyze and interpret neural 119 

activity, including applying machine learning approaches in novel ways 57,65–67. The combination of 120 

these approaches provides a far greater ability to interact with biological neural networks and then 121 

analyze the subsequent outcomes to enable greater expressions of SBI. 122 

 123 

3) Neurocomputational Theories and Informatic Analysis 124 

While the ability to generate neural tissue and interact with it via hardware and software is necessary 125 

for SBI, it is not sufficient. It is also critical to be able to understand mechanisms by which neural 126 

systems engage in intelligent and/or goal-directed behavior in order to elicit these functions in a 127 



6 
 

meaningful way. Other works cover the myriad of theories postulated in greater detail (e.g. 68,69), so 128 

here we provide only a brief overview.  129 

Theories can either focus on organization or optimization, with the opportunity for overlap. The 130 

former attempts to explain the structural and/or functional patterns observed in neural systems (e.g. 70–131 

77). The latter focuses on why a neural system may exhibit such organization – i.e., why such features 132 

are optimal for a system to survive and thrive in a dynamic environment (e.g. 78–88). One of the 133 

limitations of this area is that many theories about how internal states such as intelligence, cognition, 134 

sentience, consciousness etc. may arise and the implications of this are exceedingly difficult to 135 

empirically test and interrogate in vivo89–92. Therefore, while enormous conceptual advancements have 136 

been made in this area that can potentially facilitate basic SBI, the ability to test these theories 137 

requires SBI techniques to co-develop more controlled research methods (Figure 2). In turn, this will 138 

also lead to more advanced applications of SBI.     139 

 140 

Establishing Synthetic Biological Intelligence as an Ethical Platform Technology  141 

Figure 2 | 

Representation of co-

development of theory 

and experimental tools 

which can be informed 

via theory development, 

identifying testable 

implications, and 

designing experiments to 

test these implications. 

Experimental tools can 

then be built and used to 

generate data which can 

be compared to the 

theory and the theory 

then refined so the 

process can be repeated. 
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While development on each of these areas has been ongoing, the innovation through synthesis enabled 142 

by combining these technologies has exceptional promise on multiple fronts. Perhaps for this reason, 143 

numerous large national and international research consortia have recently arisen to investigate this 144 

area including: The Mind in Vitro project, for which The National Science Foundation awarded a 7-145 

year, $15 million project grant to the multi-university team led by the University of Illinois Urbana-146 

Champaign (UIUC); the EU-funded NEU-ChiP project which received  €3.5 million in funding from 147 

the European Commission; and the John Hopkins University-led Organoid Intelligence research focus 148 

group55,93,94. Industry-backed research interests have also arisen and are actively involved in pursuing 149 

this research, such as Australian based Cortical Labs and USA based Koniku1,95,96. 150 

Preliminary studies have already attempted to integrate these neural systems into both real-world 151 

applications through robotics and into virtual environments (e.g. 1,17,24), although more work is 152 

required. Improvements in SBI technology could allow more useful interactions and processes in 153 

these environments. While it is difficult to set likely timelines on when this technology will mature, 154 

there are compelling reasons to foresee SBI as a cornerstone of real-time autonomous systems. 155 

Biological systems display tremendous capacity to navigate complex and dynamic environments with 156 

significant flexible storage, engage in highly sample efficient learning, recover functionality despite 157 

significant injury or disease to the brain, and achieve this with minimal power consumption97–100. 158 

Even current SBI, while rudimentary, has already demonstrated higher sample efficiency compared to 159 

deep reinforcement learning algorithms101. With future work planned to focus on moving towards 160 

utilizing organoids as a substrate for intelligent processes, this potentially raises the capabilities even 161 

further55. As such, the potential of SBI systems has already been recognised as a promising pathway 162 

to intelligent systems, especially when real-time, sample efficient, adaptive learning is required 102,103.  163 

Ethical issues around the production of SBI systems predominantly focus on donor issues which have 164 

been previously identified in the fields of organoid research2,104. Ensuring donors are well informed, 165 

consenting, and able to negotiate compensation for their donation, coupled with the minimally 166 

invasive nature of donating, should ameliorate this concern (although it should be explored in future 167 

work). Yet, incorporating neural cultures into computer systems presents many opportunities for 168 
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novel short- and long-term applications, while also raising additional ethical challenges. Some 169 

challenges are reasonably foreseeable and can be broadly broken down into two key subsets: 1) 170 

concerns about applications of SBI technology; 2) uncertainty around the potential of SBI technology 171 

to give rise ‘conscious’ systems that may be worthy of special moral consideration. We discuss both 172 

below. 173 

Ethical Considerations using SBI for Disease Modelling and Drug Testing  174 

A key short-term benefit could focus on potentially more advanced in vitro preclinical drug screening 175 

and modeling of brain-related diseases or disorders. Recently in vitro testing drug targets has become 176 

increasingly more common, especially with the advent of organoids105–108. Yet while this work can be 177 

very effective in some instances, ultimately for diseases where neurological and psychiatric factors 178 

are involved, they do not capture the essential function of a neural system. Simply put, the purpose of 179 

a neural system is not to express key markers of display firing, it is to process information and 180 

respond accordingly, typically in a dynamic fashion.  181 

For this reason, historically this work has been conducted on animals, specifically rodent models e.g., 182 

35,109–112. Rodent models have some physiological similarities to humans, yet are extremely low 183 

throughput solutions and require expensive support personnel and infrastructure to maintain113,114. 184 

Conversely other models, such as zebrafish are much higher throughput, yet have fewer physiological 185 

linkages to humans113,114. Brain organoid models have already been used as an alternative to animals 186 

in research on neurological diseases115.  Integrating lab-grown neurons into SBI’s may enable a wider 187 

range of medical research to occur within in vitro models. SBI offers the potential to create high-188 

throughput models of brain disease that are physiologically similar to humans, facilitating better 189 

research into brain disease and pre-clinical drug screening, and doing so while reducing the need for 190 

animal suffering106,116–119.  Despite this promise, the translatability of this approach will still need to be 191 

carefully assessed to ensure safety and external predictive validity104.  192 

One challenge with using stem cell models for drug screening is a lack of diversity in stem cell 193 

lines120. Current stem cells lines are predominately made from cells of people with European ancestry. 194 
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As drug responses can differ amongst people of different genetic backgrounds, results from stem cell 195 

models created from a single cell line may not be generalisable. This limitation raises concerns in 196 

relation to equity and justice.  A short-term solution to this problem is to ensure SBIs are created 197 

using multiple stem cell lines from people with diverse genetic ancestries. A medium-term solution is 198 

to combine SBIs with personalised medicine approaches to the study and treatment of brain disease, 199 

by allowing SBIs to be grown from patients’ own cells which then exactly match their genotype. As 200 

drug responses can differ from individual to individual, the personalised medicine approach is 201 

particularly promising 121.  202 

In this manner, SBI offers benefits both in potentially providing advanced pathways disease modeling 203 

and testing novel therapies with the chance to see how metrics related to information processing are 204 

impacted. While an equity issue may still exist around access to this personalized approach, here the 205 

early involvement of industry research is a potential advantage. Industry inherently has a 206 

predisposition to work towards more affordable solutions to enable access to broader markets. 207 

Therefore, although industry research partners into SBIs may be incentivized to reduce access barriers 208 

through self-interest and reduce concerns around equity, further exploration of this issue is required.  209 

Coupled with the above, a related ethical benefit is that SBIs may reduce the need for animal testing 210 

in certain cases. Given the animals whose cognition most closely resembles human cognition (non-211 

human primates122–124), are also the animals whose use in testing raises the greatest moral concern 212 

(e.g. see 125), this application of SBIs can be viewed as strongly ethically desirable 9,126.A general 213 

principle of research ethics is that we should aim to minimize risk of harm to research participants127. 214 

One of the ways in which this principle can be operationalized is by ensuring testing occurs in entities 215 

that have the lowest moral status. This is sometimes called the ‘subsidiarity principle’ and has 216 

previously been used to argue that we only should avoid testing on embryonic stem cells where the 217 

same tests can be performed using other stem cells with fewer moral concerns to consider 128.  This 218 

same principle can be used to argue that we should be testing on SBIs rather than animals wherever 219 

possible and would emphasize the ethical merit of this endeavour.  220 

Ethical Considerations using SBI for Computational or Intelligent Processes  221 
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Developing SBI also offers the potential to better understand how computation or intelligence arises 222 

in neural systems. This exploration offers both short- and long-term applications. Shorter term SBIs 223 

offer the chance to explore how neural systems process information and provide the potential to refine 224 

existing, or develop new, theories. Being able to better understand how neural systems display traits 225 

such as ‘intelligence’ also means that such traits could be leveraged in wider applications in the 226 

future.  227 

As part of this work, from an ethical perspective, it is also necessary to consider neurocomputational 228 

and informatic approaches that try to quantify when a neural system may also display a trait requiring 229 

moral attention. Approaches such as the Integrated Information Theory (IIT), neuro-230 

representationalism, active inference, global workspace theories (GWTs), etc., offer avenues to 231 

establish useful correlates of potential states 129–132. Moreover, compelling neural correlates of 232 

consciousness in humans have been previously proposed, such as the Perturbational Complexity Index 233 

(PCI) or neural criticality, which offer other approaches to consider9,118,133,134. Yet assumptions behind 234 

these approaches means these metrics can have serious limitations in predictive validity if 235 

inappropriately applied to in vitro (or other) systems as similar mathematical criteria could be 236 

established in non-conscious systems (Figure 3 for examples)9,118,133. 237 

Further applications of SBI research are aimed at developing approaches to integrate broader theories 238 

of population dynamics with more reductive single cell processes, to allow a better understanding of 239 

neurobiology69,135. For example, early work has already identified conditions which give rise to traits 240 

such as neural criticality in vitro, previously a contentious question118.   Not only would this inform 241 

fundamental mechanisms underpinning intelligence and related states, it may provide insight into 242 

more efficient or powerful algorithms for machine learning and artificial intelligence research – 243 

consistent with calls from the research community136.  244 

A potential longer-term benefit of SBI research is more sustainable computer systems which are less 245 

dependent on the availability of large amounts of power to operate.   Climate change, driven by 246 

increasing carbon emissions, has been described as the greatest moral challenge of our time137.   It 247 

results in direct harm to individuals through extreme weather events and supply disruptions for 248 

Figure 3 | Simplified comparison for how the Perturbational Complexity Index (PCI) as a metric is not 

inherently a suitable marker for consciousness, whereby a PCI metric would be increased after 

stimulation of several systems, yet not all systems could reasonably be considered conscious.  
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essential resources. Furthermore, the burden of climate change falls predominantly on those living in 249 

low-income countries and raises serious concerns about global justice.  Biological intelligences are 250 

much more energy efficient than traditional computer systems, with a human brain approximately 251 

using 20 watts of energy, able to be distributed through a complex network 138–141.  In contrast, 252 

consider the K supercomputer produced by Fujitsu, which can perform 8.2 billion megaflops 253 

(1,048,576 floating-point operations per second) but which requires 9.9 million watts to be powered. 254 

The increased use of computer systems in all aspects of our lives has led to increased carbon 255 

emissions coming from the  IT industry142. These problems will be exacerbated by the increased use 256 

of machine learning algorithms and systems of generative artificial intelligence, which often require 257 

power intensive super-computers to operate 143. As such, if even a small proportion of these 258 

information processing tasks can be done with SBI, there is a compelling environmental reason to 259 

explore these alternatives.  260 

How to Approach Additional Ethical Considerations for SBI  261 

Foremost, it is imperative that a broadly agreed upon nomenclature for this field is adopted89,144,145. 262 

We used the words conscious and intelligence above in quotation marks precisely because there are 263 

different ways of understanding these terms with different implications for how we describe SBIs89,146. 264 

It is preferrable that the field has agreed terms to describe the different aspects of SBI to enable 265 

constructive discussions and exploration of the technology, along with considering the ethical 266 

challenges.  Without at least broad standardisation2 of terms, constructive discourse will be greatly 267 

hampered. Previously, key terminology has been imprecise, with signifiers used interchangeably to 268 

represent one or another concept that are themselves seldom formally defined. Even in cases where a 269 

term may be defined in one paper, the lack of coherence in the field necessitates a degree of attention 270 

and good faith on behalf of the reader, courtesies that are not always bestowed147. Terms related to 271 

complex processes or internal states that are attributed various degrees of moral status are particularly 272 

 
2 This standardization effort should involve a public invitation to the broad scientific community to ensure a 
multi-disciplinary approach is adopted and to encourage widespread adoption. The authors have recently 
begun work into this endeavor and welcome collaborators to join.  
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challenging. These include, but are not limited to, “sentience”, “consciousness”, “intelligence”, 273 

“computation”, “cognition”, “qualia”, “agency” and “behaviour”.  274 

Secondly, identifying reliable objective metrics which can track phenomena of ethical relevance 275 

should remain a focus of research going forward55,89,91. These can accord with challenges which fall 276 

under both the applications of SBI and the moral status of SBI as described above. It will be necessary 277 

to identify which candidates are necessary to consider for moral status. Functional markers such as 278 

being goal-directed, autonomously responsive, or showing learning can be considered as part of this. 279 

However, it should be noted that performing a function alone is not sufficient to identify a system as 280 

‘phenomenologically conscious’. Examples of function without reported conscious experience have 281 

regularly been observed in Type 1 blindsight patients, who can perform relatively complex behaviors 282 

with no perception of the relevant sensation 9,148,149. As such, regarding the moral status of SBI will 283 

require development of metrics that can help researchers infer when a model might develop these 284 

properties. Further, deciding the moral relevance of this status for a given application will also require 285 

agreement on what properties give rise to moral status and how best to proceed. Such an approach 286 

should involve a meaningful dialogue with the broader public and stakeholders to determine where 287 

ethical boundaries may lie.   288 

Thirdly, once these understandings have been obtained, it will become crucial to identify areas and 289 

approaches that maximise benefits and minimise risks. Concerns about the application of SBI 290 

technology can be informed by established ethical frameworks for emerging technologies150,151. The 291 

principles of anticipatory governance, whereby science is shaped towards achieving socially and 292 

morally desirable outcomes in the face of scientific and ontological uncertainties, can be useful here. 293 

151. While some measures used in humans such as the PCI may have some merit, as above, there is no 294 

evidence they are appropriate for in vitro systems. Indeed, it is entirely likely that only through further 295 

development of SBI technology will the necessary knowledge to even identify these metrics be 296 

obtained. This inherent uncertainty further highlights the need for an approach that can reasonably 297 

anticipate morally significant properties and guide an ethical response as new evidence and 298 
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knowledge emerges over obstructive precautionary measures that pay insufficient attention to the 299 

potential for beneficial outcomes.  300 

Conclusion 301 

Elucidating the full range of applications and associated ethical or moral issues raised by SBIs 302 

exceeds the scope of this work. Therefore, here we have proposed key steps to building a viable 303 

framework to explore these issues in a constructive manner. Researchers should engage with broader 304 

publics and stakeholders to generate meaningful dialogue on the moral boundaries and shape SBI 305 

applications towards achieving socially and ethically desired outcomes. 306 

Going forward, one key question will be: What, if anything, can we deduce about the moral status of 307 

these entities?  For example, it has been argued that the most important feature of conscious systems 308 

that gives rise to moral status is not general, or domain specific, intelligence, but rather evaluative 309 

sophistication – the capacity to have a wide range of valanced subjective experiences152. This builds 310 

on a view first articulated by Jeremy Bentham regarding the moral status of animals “The question is 311 

not, Can they reason? nor, Can they talk? but, Can they suffer?"142 Following this perspective, even if 312 

SBIs produce human-like intelligence, this does not inherently imply they have moral status.  Despite 313 

this, it is possible that the more sophisticated neural architecture required for human-like intelligence 314 

may facilitate more complex – and more morally valuable – conscious experiences and/or cognitive 315 

mental states. Determining measures that can help researchers infer when systems are likely to 316 

possess evaluative sophistication should be a goal of on-going research.   317 
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